Irredundance and domination in kings graphs

نویسندگان

  • Odile Favaron
  • Gerd Fricke
  • Dan Pritikin
  • Joël Puech
چکیده

Each king on an n×n chessboard is said to attack its own square and its neighboring squares, i.e., the nine or fewer squares within one move of the king. A set of kings is said to form an irredundant set if each attacks a square attacked by no other king in the set. We prove that the maximum size of an irredundant set of kings is bounded between (n− 1)=3 and n=3, and that the minimum size of a maximal irredundant set of kings is bounded between n=9 and (n + 2)=3 , where the latter upper and lower bounds are in fact equal when n ≡ 0 (mod 3). Results are given for related domination and independence problems. c © 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classes of Graphs for Which Upper Fractional Domination Equals Independence, Upper Domination, and upper Irredundance

This paper investigates cases where one graph parameter, upper fractional domination, is equal to three others: independence, upper domination and upper irredundance. We show that they are all equal for a large subclass, known as strongly perfect graphs, of the class of perfect graphs. They are also equal for odd cycles and upper bound graphs. However for simplicial graphs, upper irredundance m...

متن کامل

Computational methods and new results for chessboard problems

We describe various computing techniques for tackling chessboard domination problems and apply these to the determination of domination and irredundance numbers for queens’ and kings’ graphs. In particular we show that γ(Q15) = γ(Q16) = 9, confirm that γ(Q17) = γ(Q18) = 9, show that γ(Q19) = 10, show that i(Q18) = 10, improve the bound for i(Q19) to 10 ≤ i(Q19) ≤ 11, show that ir(Qn) = γ(Qn) fo...

متن کامل

Total perfect codes‎, ‎OO-irredundant and total subdivision in graphs

‎Let $G=(V(G),E(G))$ be a graph‎, ‎$gamma_t(G)$. Let $ooir(G)$ be the total domination and OO-irredundance number of $G$‎, ‎respectively‎. ‎A total dominating set $S$ of $G$ is called a $textit{total perfect code}$ if every vertex in $V(G)$ is adjacent to exactly one vertex of $S$‎. ‎In this paper‎, ‎we show that if $G$ has a total perfect code‎, ‎then $gamma_t(G)=ooir(G)$‎. ‎As a consequence, ...

متن کامل

Independence Saturation and Extended Domination Chain in Graphs

The six basic parameters relating to domination, independence and irredundance satisfy a chain of inequalities given by ir ≤ γ ≤ i ≤ β0 ≤ Γ ≤ IR where ir, IR are the irredundance and upper irredundance numbers, γ,Γ are the domination and upper domination numbers and i, β0 are the independent domination number and independence number respectively. In this paper, we introduce the concept of indep...

متن کامل

The Domination Parameters of Cubic Graphs

Let ir(G), γ(G), i(G), β0(G), Γ(G) and IR(G) be the irredundance number, the domination number, the independent domination number, the independence number, the upper domination number and the upper irredundance number of a graph G, respectively. In this paper we show that for any integers k1, k2, k3, k4, k5 there exists a cubic graph G satisfying the following conditions: γ(G)−ir(G) ≥ k1, i(G)−...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 262  شماره 

صفحات  -

تاریخ انتشار 2003